MAT8034: Machine Learning

Markov Decision Processes

Fang Kong
https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Slide credits: ai.berkeley.edu

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Reinforcement Learning

\

Agent \

State: s)
Actions: a

Reward: r
/

Environment

(&

= Basicidea:
= Receive feedback in the form of rewards
® Transfer to the next state after taking an action
= Must (learn to) act so as to maximize expected rewards

= All learning is based on observed samples of outcomes!

Era of Simulation Era of Human Data Era of Experience

AlphaZero

Computer Use

aouabijjeul uewnysadns

ChatGPT

Atari

Attention on Reinforcement Learning

2014 2016 2018 2020 2022 2024

Year

Figure 1: A sketch chronology of dominant Al paradigms. The y-axis suggests the proportion of the field’s
total effort and computation that is focused on RL.

https://storage.googleapis.com/deepmind-media/Era-of-Experience%20/The%20Era%200f%20Experience%20Paper.pdf

Example: Breakout (DeepMind)

[© TwoMinutelectures]

Example: AlphaGo (2016)

Reinforcement Learning in ChatGPT

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

]
\/

e}

Z

Some people went

to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

Explain gravity.

Moon is natural

o

Explain war...

o

Paople went to

satellite of the moon.

-

J

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

Reasoning Capability in LLMs

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z.F. Wu, Zhibin Gou, Zhihong Shao,
Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chenggi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun
Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang,
Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J.L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang,
Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, R.J. Chen, R.L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S.S. Li et al. (100
additional authors not shown)

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step,
demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language
mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAl-
01-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.

Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.Al); Machine Learning (cs.LG)
Cite as: arXiv:2501.12948 [cs.CL]

(or arXiv:2501.12948v1 [cs.CL] for this version)
https://doi.org/10.48550/arXiv.2501.12948 0

September 12,2024 Release

Learning to reason with LLMs

We are introducing OpenAl ol, a new large language model trained with reinforcement learning to perform complex

reasoning. ol thinks before it answers—it can produce a long internal chain of thought before responding to the user.

MDPs: Actions + Search + Probabilities + Time

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

= An MDP is defined by:

= Asetofstatess €S

A set of actions a € A

A transition function T(s, a, s’)
= Probability that a from s leads to s, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = Sl\St — StaAt = Ay, Si—1 = St—1,At—1, ...5 = So)

Andrey Markov
P(St_|_1 = S"St = S¢, At = Clt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

" For MDPs, we want an optimal policy n*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes expected
utility if followed

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Optimal Policies

o N
T Il
= ©
I~ o

Example: Racing

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated

Two actions: Slow, Fast
0.5

Going faster gets double reward

Slow

Overheated
1.0

Example: Racing

S a s' T(s,a,s’) | R(s,a,s’)

1.0 +1
0.5 +2
0.5 +2
0.5 +1

0.5 +1 —

(\‘ 1.0
05 +1 1 Sow ’ \ \;’ Fast P
| 0.5 &S _ j
1.0 ~10 —
—

Fast 05 +2
1.0 0 .

’ Overheated

+2

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

As — S iS a State

~
~

/—> (s,a,s’) called a transition
’ s,a,s’ T(s,a,s’)=P(s’[s,a) N
R(s,a,s’)
N\

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, O, 1] or [1,0,0]

Discounting

" |t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Visualizing Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

* Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Stationary Preferences*

©
L el

g @
:z\°

= Theorem: if we assume stationary preferences:

[al,ag, o s] ~— [bl,bg, -]

0

[Tv a1,dz, ..] >~ [T, bl,bg, ..]

" Then: there are only two ways to define utilities

= Additive utility: U([rg,71,72,...]) =r0g+7r1+710+ -

= Discounted utility: U([rg,71,72,...]) = rg+yr1 +~7%r2- -

Quiz: Discounting

Given: 10 1
, a b C d 8]
= Actions:
= Fast
= West

= Exit (only available in exit states a, €e)

= Transitions: deterministic
Quiz 1: For y =1, what is the optimal policy?

Quiz 2: For y=0.1, what is the optimal policy?

Quiz 3: For which y are West and East equally good when in state d?

10

10

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:
= Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)

= Discounting:use0O<y<1

U(lro, ... Too)) = > ~'re < Rmax/(1 —)
t=0

= Smaller y means smaller “horizon” — shorter term focus
Y

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount vy) 5,8

= MDP quantities so far:

= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and s is a
acting optimally state
s (s, a)is a
" The value (utility) of a g-state (s,a): P < g-state
Q’(s,a) = expected utility starting out o N
having taken action a from state s and 58,5 (s,a,8") is a
, transition

(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise =0

Discount =1
Living reward =0

Snapshot of Demo — Gridworld Q Values

5P

e

QO-VALU

Noise =0

Discount=1

Snapshot of Demo — Gridworld V Values

GCridworld Display

A
.

VN

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =1

Living reward =0

Snapshot of Demo — Gridworld Q Values

X<
DDA |

Q-VALUES AFTER 100 ITERATIONS N9i56=0-2

i

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

Noise = 0.2
D nt=0.9
Living reward =0

Snapshot of Demo — Gridworld V Values

0.31 »| 0.51 »| 0.72)

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =-0.1

Snapshot of Demo — Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS Noise = 0.2

Values of States

= Fundamental operation: compute the (expectimax) value of a state

= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = max Q*(s, a)

Q*(s,a) => T(s,a, s [R(s, a,s’) + ny*(s’)}

V(s = ma?XZT(S, a,s) [R(s,a, s + ny*(s’)}

S

Racing Search Tree

Racing Search Tree

A

R CLR TR

LHTImEL]

LIEEINEL

I

Racing Search Tree

= Problem: States are repeated

= |dea: Only compute needed
guantities once

= Problem: Tree goes on forever

= |dea: Do a depth-limited
computation, but with increasing
depths until change is small

= Note: deep parts of the tree
eventually don’t matterify<1

R CHORNERRRE CHEAT TR EHLRME TR

il
'Y

—
-

Computing Time-Limited Values

.A.AA 'A 'AA A

NN N RN NN

VT T T O O O VT T Y | O O e VO O WY |

llI'lIl' I "I |‘||l||xll' - Illlllll . III'IIJl I|III| - lII'IIA| I |AI1|

(=
(=
(=
(=

VT CRERREERI TR TR TR TR

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it’'s what a depth-k expectimax would give from s

= Va(@)

T

CROCR A

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

'.
e

b,

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.
.H

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Value lteration

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

S a s' T(s,a,s’) | R(s,a,s’)
Slow 1.0 +1
Fast 0.5 +2
Fast 0.5 +2
Slow 0.5 +1
Slow 0.5 +1
Fast = [1.0 ~10
: 5?“;}* end) | w10 0

Vie1(8) + maaXZT(s,a,s’) {R(s,a, s 4+ ’}/Vk(sl)]

S
Assume no discount!

Example: Value Iteration

1.0

Fast

Fast 05 +2

0.5

Overheated

+2

Assume no discount!

! [20] Viepa(5) < max T (o, a,9) [Ro,0,8) + Vel

S

Convergence

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V| and V,,1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

= That last layer is at best all Ryjax

= |tisat worst Ryn / \ /

= But everything is discounted by yk that far out
= So V, and V,; are at most y* max|R| different
= So as kincreases, the values converge

Next Time: Policy-Based Methods

